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Abstract

IMPORTANCE The incidence of appendiceal cancer (AC) is rising, particularly among individuals
younger than 50 years (early-onset AC), with unexplained etiologies. The unique spectrum of
somatic cancer gene variations among patients with early-onset AC is largely undetermined.

OBJECTIVE To characterize the frequency of somatic variations and genomic patterns among
patients with early-onset (age <50 years) vs late-onset (age �50 years) AC.

DESIGN, SETTING, AND PARTICIPANTS This cohort study included individuals aged 18 years and
older diagnosed with pathologically verified AC. Cases with clinical-grade targeted sequencing data
from January 1, 2011, to December 31, 2019, were identified from the international clinicogenomic
data-sharing consortium American Association for Cancer Research Project Genomics Evidence
Neoplasia Information Exchange (GENIE). Data analysis was conducted from May to
September 2020.

EXPOSURES Age at clinical sequencing.

MAIN OUTCOMES AND MEASURES Somatic variation prevalence and spectrum in AC patients was
determined. Variation comparisons between early-onset and late-onset AC were evaluated using
multivariable logistic regression with adjustment for sex, race/ethnicity, histological subtype,
sequencing center, and sample type.

RESULTS In total 385 individuals (mean [SD] age at clinical sequencing, 56.0 [12.4] years; 187
[48.6%] men; 306 [79.5%] non-Hispanic White individuals) with AC were included in this study, and
109 patients (28.3%) were diagnosed with early-onset AC. Race/ethnicity differed by age at
sequencing; non-Hispanic Black individuals accounted for a larger proportion of early-onset vs late-
onset cases (9 of 109 [8.3%] vs 11 of 276 [4.0%]; P = 0.04). Compared with patients aged 50 years or
older at sequencing, patients with early-onset AC had significantly higher odds of presenting with
nonsilent variations in PIK3CA, SMAD3, and TSC2 (PIK3CA: odds ratio [OR], 4.58; 95% CI, 1.72-12.21;
P = .002; SMAD3: OR, 7.37; 95% CI, 1.24-43.87; P = .03; TSC2: OR, 12.43; 95% CI, 1.03-149.59;
P = .047). In contrast, patients with early-onset AC had a 60% decreased odds of presenting with
GNAS nonsilent variations compared with patients with late-onset AC (OR, 0.40; 95% CI, 0.21-0.76,
P = .006). By histological subtype, young patients with mucinous adenocarcinomas of the appendix
had 65% decreased odds of variations in GNAS compared with late-onset cases in adjusted models
(OR, 0.35; 95% CI, 0.15-0.79; P = .01). Similarly, patients with early-onset nonmucinous appendiceal
adenocarcinomas had 72% decreased odds of presenting with GNAS variations vs late-onset cases,
although these findings did not reach significance (OR, 0.28; 95% CI, 0.07-1.14; P = .08). GNAS and
TP53 variations were mutually exclusive in ACs among early-onset and late-onset cases (P < .05).
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Abstract (continued)

CONCLUSIONS AND RELEVANCE In the study, AC among younger individuals harbored a distinct
genomic landscape compared with AC among older individuals. Development of therapeutic
modalities that target these unique molecular features may yield clinical implications specifically for
younger patients.

JAMA Network Open. 2020;3(12):e2028644.

Corrected on March 26, 2021. doi:10.1001/jamanetworkopen.2020.28644

Introduction

Appendiceal cancer (AC) is a rare neoplasm, with an age-adjusted incidence rate of 0.12 per
1 000 000 person-years.1,2 The rarity of AC has presented challenges in understanding disease
pathogenesis and in developing clinical management guidelines for AC. Definitive treatment for
early-stage AC is surgery, and cytoreductive surgery (CRS) as well as the consideration of heated
intraperitoneal chemotherapy (HIPEC) may also yield long-term survival benefit for select patients.
However, most patients will present with distant metastatic disease with significant tumor burden in
the peritoneum, placing them at higher risk for bowel obstruction and increased morbidity and
mortality. For most patients with AC, CRS and HIPEC are not feasible, and systemic chemotherapy will
be provided only for palliative intent. Currently, the National Comprehensive Cancer Network
guidelines recommend treatment of AC cases with systemic therapy according to colon cancer
guidelines.3 This is largely because of lack of robust data for AC, and treatment regimens are
extrapolated from clinical studies related to colon cancer. However, emerging evidence reveals
distinct molecular features between colorectal cancer (CRC) and AC.4-7 Recent genomic profiling of
AC has begun to shed light on distinct variant profiles among patients of all ages, given that GNAS
(OMIM 139320) and TP53 (OMIM 191170) variations were associated with overall survival.8 However,
earlier studies reported contradictory findings because GNAS variations were not associated with
survival among patients with appendiceal mucinous neoplasms.9 In the absence of prognostic and
predictive biomarkers and new therapeutic targets specific to AC, therapeutic advances in this
malignant neoplasm remain very limited.

Given the rarity of AC, little is also known regarding risk factors and the epidemiology of this
disease. Incidence rates of individuals of all ages with malignant AC have risen 232% between 2000
and 2016 in the United States.10,11 However, rates of appendectomies—where many AC cases are
detected as incidental findings12,13—remained stable during this period.11 Given that AC incidence
rates also continue to rise in older and younger patients,11 these findings have raised the question of
what causes underlie the rising burden of AC among patients diagnosed younger than 50 years (ie,
early-onset AC). Our recent findings14 have shed light on the clinicopathologic and demographic
patterns of early-onset AC, noting disparities in survival among young patients by race/ethnicity and
sex. However, to our knowledge, no studies to date have compared molecular phenotypes of AC by
age. Given the known molecular phenotypes unique to early-onset vs late-onset CRC,15,16 we
hypothesized that distinct etiologies also underlie the growing AC burden among young patients.
The purpose of this study, comprised of patients from the international clinicogenomic data-sharing
consortium American Association of Cancer Research (AACR) Project Genomics Evidence Neoplasia
Information Exchange (GENIE),17 was to characterize distinct putative driver variations and genes
between patients diagnosed with early-onset and late-onset AC.

JAMA Network Open | Oncology Somatic Cancer Gene Variations Among Adults With Appendiceal Cancer by Age

JAMA Network Open. 2020;3(12):e2028644. doi:10.1001/jamanetworkopen.2020.28644 (Reprinted) December 9, 2020 2/13

Downloaded From: https://jamanetwork.com/ by a Vanderbilt University User  on 04/02/2021

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2020.28644&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2020.28644
https://omim.org/entry/139320
https://omim.org/entry/191170


Methods

Data Sources and Study Population
The AACR GENIE project17 has generated next-generation clinical sequencing data in tumor tissues
and associated pathology reports from multiple cancer centers in the United States, Canada, and
Europe. This study has been granted data access through Database of Genotypes and Phenotypes
(dbGap) project #24541. Somatic variation and clinical data from AC cases were downloaded from the
GENIE project via Synapse (release 7).18 This study was exempt from institutional review board
approval and informed consent because deidentified GENIE data are publicly available to the entire
scientific community.17 This study followed the Strengthening the Reporting of Observational Studies
in Epidemiology (STROBE) reporting guideline. A total of 385 pathologically confirmed AC cases
with a unique patient record and matched clinical and variation data sequenced between January 1,
2011, and December 31, 2019, were included in our study.

Clinicopathologic and Demographic Features
Demographic variables examined included patient sex, age at clinical sequencing, race/ethnicity
(non-Hispanic White, non-Hispanic Black, Hispanic/Spanish/Latino, Asian or Pacific Islander, or
other), and sequencing center. The use of age at clinical sequencing likely carries temporal proximity
to age at cancer diagnosis, as the clinical workflow for next-generation sequencing in oncology is
applied after diagnosis of cancer and is used for clinical management/actionability.19 Clinical and
pathological variables examined included histological subtype (nonmucinous adenocarcinoma,
mucinous adenocarcinoma, goblet cell carcinoid, and signet ring cell carcinoma) and sample type
(primary tumor or metastatic site).

Somatic Cancer Gene Variations
Somatic variation data in tumor tissues have been generated using clinical-grade targeted gene panel
sequencing approaches from different sequencing centers. Median sequencing depth (pooled
median read depth, 500X) by sequencing center is outlined in eTable 1 in the Supplement. To ensure
consistent somatic variation calling in tumor tissues and to minimize artifacts and germline events,
GENIE has applied a stringent filtering pipeline to remove putative germline variants (eg, using
pooled blood samples as controls, existing databases of known artifacts, and common germline
variants from the 1000 Genomes Project or Exome Sequencing Project with allele frequencies
>0.1%). We restricted our analysis to nonsilent variants, including missense, frameshift,
nonframeshift, splicing, nonsense, and truncating variations, defined as frameshift, splicing, and
nonsense variations. Nonsilent variation events (eg, bin variable) and variant frequencies were
calculated based on study participants harboring at least 1 nonsilent variation, as we have previously
described.20 A recurrent variation was defined as a nonsilent variant observed in at least 3 patients
within our cohort.

Statistical Analysis
To assess clinical and demographic features between patients diagnosed with early-onset AC (age
<50 years at sequencing) and late-onset AC (age �50 years at sequencing), features were compared
by age group using χ2 or Fisher exact tests for categorical variables and t tests for continuous
variables. The significance levels of cooccurrence and mutual exclusivity for a pair of variant genes
were calculated by the Mutual Exclusivity Modules statistical method from cBioportal.21

Variant comparisons by age group were evaluated using multivariable logistic regression
analysis with an adjustment for patient sex, race/ethnicity, histological subtype, sequencing center,
and primary sample type, in which all covariates were used as fixed effects and the reference
outcome category was individuals diagnosed with late-onset AC. In addition, we performed similar
analysis stratified by histological subtype. All tests were 2-sided, and P < .05 was considered
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statistically significant. All analyses were conducted using R software version 3.3.3 (R Project for
Statistical Computing).

Results

A total of 385 individuals diagnosed with AC were identified from 12 international institutions within
the AACR Project GENIE Consortium during the 9-year study period (Table 1). Approximately 30%
of the population was diagnosed with early-onset AC (109 patients [28.3%]), and mean (SD) age at
clinical sequencing was 56.0 (12.4) years. A total of 187 men (48.6%) were in the sample, and the
proportion of men did not differ between early-onset vs late-onset AC cases (54 [49.5%] vs 133
[48.2%]; P = .81). Approximately 4 of every 5 patients was a non-Hispanic White individual (306
[79.5%]). Race/ethnicity differed by age group; non-Hispanic Black patients accounted for a larger
proportion of early-onset vs late-onset cases (9 of 109 [8.3%] vs 11 of 276 [4.0%]; P = .04). By
histological subtype, 177 patients (44.4%) were diagnosed with nonmucinous adenocarcinoma, 156
(40.5%) had mucinous adenocarcinoma, 32 (8.3%) had goblet cell appendiceal carcinoma, and 26
(6.8%) had signet ring cell appendiceal carcinoma (Table 1). However, histological subtype did not
statistically significantly differ by age group in this cohort.

Table 1. Clinical and Demographic Characteristics of Patients With Appendiceal Cancer From the American
Association of Cancer Research Project Genomics Evidence Neoplasia Information Exchange, 2011 to 2019

Characteristic

No. (%)

P valueaTotal (N = 385)

Age at clinical sequencing, y

<50 (n = 109) ≥50 (n = 276)
Age at clinical sequencing, y

<30 9 (2.3) 9 (8.3) 0

NA

30-39 26 (6.8) 26 (23.9) 0

40-49 74 (19.2) 74 (67.9) 0

50-59 125 (32.5) 0 125 (45.3)

60-69 95 (24.7) 0 95 (34.4)

70-79 48 (12.5) 0 48 (17.4)

≥80 8 (2.1) 0 8 (2.9)

Mean (SD) 56.0 (12.4) 41.2 (7.3) 61.9 (8.4) NA

Race/ethnicity

Non-Hispanic

.04

White 306 (79.5) 81 (74.3) 225 (81.5)

Black 20 (5.2) 9 (8.3) 11 (4.0)

Hispanic, Spanish, or Latino 13 (3.4) 3 (2.8) 10 (3.6)

Asian or Pacific Islander 9 (2.3) 6 (5.5) 3 (1.1)

Other 3 (0.8) 1 (0.9) 2 (0.7)

Unknown 34 (8.8) 9 (8.3) 25 (9.1)

Sex

Women 198 (51.4) 55 (50.5) 143 (51.8)
.81

Men 187 (48.6) 54 (49.5) 133 (48.2)

Histological subtype

Adenocarcinoma

.31

Nonmucinous 171 (44.4) 45 (41.3) 126 (45.7)

Mucinous 156 (40.5) 48 (44.0) 108 (39.1)

Goblet cell 32 (8.3) 6 (5.5) 26 (9.4)

Signet ring cell 26 (6.8) 10 (9.2) 16 (5.8)

Sample type

Primary tumor 165 (42.9) 45 (41.3) 120 (43.5)

.53Metastasis 205 (53.2) 62 (56.9) 143 (51.8)

Unknown 15 (3.9) 2 (1.8) 13 (4.7)
Abbreviation: NA, not applicable.
a P value calculations did not include unknown values.
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A total of 39 genes in AC had a variation frequency of greater than 2% among all patients
(Figure). More than half of all ACs (198 [51.4%]) had a KRAS variation (OMIM 190070), consistent
with previous reports (Figure, A).4,22-24 TP53 and GNAS were altered in more than one-quarter of all
ACs (105 [27.3%] and 101 [26.2%], respectively) (Figure, A). Other genes commonly altered in at
least 5% of AC cases included SMAD4 (OMIM 600993), APC (OMIM 611731), PIK3CA (OMIM 171834),
KMT2D (OMIM 602113), SOX9 (OMIM 608160), and ATM (OMIM 607585). Patterns of significant
gene cooccurrence and mutual exclusivity by age group are described in Figure, B. Among both
early-onset and late-onset AC cases, GNAS and TP53 variations were mutually exclusive (P < .05)
(Figure, B). Among young patients with AC, SOX9 and KRAS variations as well as SOX9 and TP53
variations were also mutually exclusive pairs (P < .05). The frequency and type of variations for the
top 10 frequently altered genes among ACs in patients diagnosed with early-onset and late-onset
disease are presented in Figure, C and D, respectively. In particular, GNAS and PIK3CA harbored

Figure. Genomic Landscape of Appendiceal Cancers by Age at Clinical Sequencing
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distinct variation frequencies between early-onset and late-onset ACs. A total of 21 of 109 young
patients (19.3%) had ACs with GNAS variations, whereas nearly one-third of late-onset cases (80 of
276 [29.0%]) has variations in GNAS (Figure, C). In contrast, nearly 1 in 8 young patients had ACs
with PIK3CA variants (13 [11.9%]), while only 13 tumors (4.7%) among patients aged 50 years and
older at clinical sequencing had variants in PIK3CA (Figure, D).

Baseline variation probabilities among all AC patients and by early-onset vs late-onset AC are
presented in Table 2. Next, we sought to characterize somatic alterations unique to patients with
early-onset vs late-onset ACs. Among all patients with AC, young patients had significantly higher
odds of presenting with nonsilent PIK3CA, SMAD3, and TSC2 somatic variations in ACs compared with

Table 2. Baseline Variation Probability and Differential Expression of Somatic Variants Between Patients
With Early-Onset and Late-Onset AC

Gene symbola

Baseline
variant
probability

Baseline variant probability by
age at clinical sequencing, y

OR (95% CI)b P value<50 y ≥50 y
KRAS 0.5143 0.5229 0.5109 0.98 (0.58-1.66) .94

TP53 0.2734 0.3303 0.2509 1.49 (0.87-2.55) .15

GNAS 0.2630 0.1927 0.2909 0.40 (0.21-0.76) .006

SMAD4 0.1328 0.1193 0.1382 0.95 (0.45-2.04) .90

APC 0.0805 0.0734 0.0833 0.95 (0.38-2.38) .91

SOX9 0.0772 0.0889 0.0724 1.59 (0.61-4.12) .34

PIK3CA 0.0649 0.1193 0.0435 4.58 (1.72-12.21) .002

KMT2D 0.0538 0.0762 0.0444 2.16 (0.71-6.54) .17

TGFBR2 0.0524 0.0330 0.0615 0.54 (0.13-2.20) .39

SMAD2 0.0510 0.0667 0.0444 1.38 (0.47-4.07) .56

ARID1A 0.0510 0.0381 0.0565 0.66 (0.19-2.25) .50

ATM 0.0469 0.0734 0.0364 1.81 (0.61-5.43) .29

FAT1 0.0418 0.0333 0.0452 0.77 (0.19-3.18) .72

RNF43 0.0402 0.0619 0.0310 1.75 (0.50-6.13) .38

CDH1 0.0365 0.0183 0.0436 0.41 (0.07-2.52) .34

FBXW7 0.0339 0.0367 0.0327 1.05 (0.29-3.81) .94

NOTCH1 0.0286 0.0275 0.0291 1.03 (0.19-5.57) .97

BRAF 0.0286 0.0183 0.0326 0.41 (0.06-2.84) .36

ARID2 0.0283 0.0095 0.0363 0.28 (0.03-2.36) .24

SMAD3 0.0257 0.0556 0.0136 7.37 (1.24-43.87) .03

EP300 0.0255 0.0190 0.0282 0.55 (0.08-3.86) .55

ATRX 0.0254 0.0286 0.0240 1.40 (0.26-7.57) .70

KDM6A 0.0254 0.0286 0.0240 1.32 (0.27-6.33) .73

NOTCH3 0.0248 0.0515 0.0133 4.08 (0.88-18.87) .07

PLCG2 0.0248 0.0309 0.0221 1.13 (0.24-5.31) .88

BCOR 0.0246 0.0103 0.0307 0.24 (0.02-2.83) .26

RB1 0.0234 0.0275 0.0218 0.75 (0.13-4.18) .74

ALK 0.0234 0.0092 0.0290 0.21 (0.02-2.14) .19

SETD2 0.0227 0.0476 0.0121 4.03 (0.84-19.41) .08

ASXL1 0.0219 0.0280 0.0194 1.82 (0.32-10.33) .50

TCF7L2 0.0217 0.0323 0.0175 1.90 (0.35-10.48) .46

MED12 0.0216 0.0412 0.0132 3.22 (0.59-17.44) .17

NRAS 0.0208 0.0183 0.0217 1.12 (0.21-6.13) .89

TSC2 0.0198 0.0381 0.0121 12.43 (1.03-149.59) .047

CARD11 0.0198 0.0190 0.0202 0.98 (0.18-5.31) .98

FLT1 0.0198 0.0095 0.0242 1.54 (0.13-18.30) .73

ERBB2 0.0182 0.0367 0.0109 3.27 (0.55-19.45) .19

CTNNB1 0.0182 0.0183 0.0181 1.34 (0.23-7.75) .74

AKT1 0.0182 0.0092 0.0217 0.31 (0.03-3.53) .34

Abbreviations: AC, appendiceal cancer; OR, odds ratio.
a Genes ranked by baseline probability of variation

occurrence.
b ORs and 95% CIs were calculated for genes from

models adjusted for patient sex, race/ethnicity,
histological subtype, sequencing center, and sample
type. Reference outcome category was individuals
with late-onset AC.
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late-onset AC cases after adjustment for sex, race/ethnicity, histological subtype, sequencing center,
and sample type (PIK3CA: odds ratio [OR], 4.58; 95% CI, 1.72-12.21; P = .002; SMAD3: OR, 7.37; 95%
CI, 1.24-43.87; P = .03; TSC2: OR, 12.43; 95% CI, 1.03-149.59; P = .047) (Table 2). In contrast, young
AC patients had 60% decreased odds of presenting with nonsilent GNAS variations compared with
late-onset cases in adjusted models (OR, 0.40; 95% CI, 0.21-0.76; P = .006). Moreover, we observed
dominant recurrent nonsilent variations for both PIK3CA and GNAS, providing additional evidence of
their putative role in appendiceal carcinogenesis (Table 2). Notably, our main findings for PIK3CA
remained statistically significant after adjustment for multiple testing among highly altered (ie, >4%)
genes (data not shown).

To further explore age-related somatic cancer gene variation patterns, we evaluated baseline
variant probability among individuals aged younger than 50, 50 to 59, 60 to 69, and 70 years or older
at clinical sequencing (eTable 2 in the Supplement). Concordant with our findings, baseline variation
probabilities of PIK3CA, SMAD3, and TSC2 were highest for AC patients age younger than 50 years at
sequencing across all age groups. Similarly, baseline GNAS variation probability also remained lowest
among early-onset AC cases. Additional comparison of somatic cancer gene variation patterns
specifically among adults diagnosed with AC and younger than 50 years at clinical sequencing vs
those aged 70 years or older revealed consistent findings, given that AC cases among those younger
than 50 years at sequencing had 74% decreased odds of presenting with nonsilent GNAS variations
(OR, 0.26; 95% CI, 0.11-0.63; P = .003) compared with adults aged 70 years or older (eTable 2 in the
Supplement). Similarly, early-onset AC cases had significantly higher odds of presenting with
nonsilent PIK3CA variations compared with those aged 70 years or older (OR = 11.69; 95% CI, 1.37-
99.82; P = .02).

Stratification of patients by histological subtype revealed that young patients with mucinous
adenocarcinomas of the appendix had 65% decreased odds of nonsilent variations in GNAS (OR,
0.35; 95% CI, 0.15-0.79; P = .01) compared with late-onset cases in adjusted models (eTable 3 in the
Supplement). Similarly, for patients with non-mucinous appendiceal adenocarcinomas, young
individuals had 72% decreased odds of presenting with GNAS variations compared with late-onset
cases, although these findings were not statistically significant (OR, 0.28; 95% CI, 0.07-1.14; P = .08)
(eTable 3 in the Supplement).

Discussion

The genomic landscape of 385 appendiceal neoplasms provides novel insight into molecular
differences of AC by age at sequencing and identifies potential biomarkers associated with AC
diagnosed at younger ages that may help unravel distinct etiologies underlying the increasing
incidence of early-onset AC. Most striking are differences in the variation patterns of GNAS, PIK3CA,
TSC2, and SMAD3 between early-onset and late-onset AC cases. Compared with cases age 50 years
and older at clinical sequencing, younger patients had higher odds of presenting with somatic
variations in PIK3CA, SMAD3, and TSC2, whereas younger patients had decreased odds of presenting
with somatic variations in GNAS. Differences in GNAS by age group were also noted in stratified
analyses for cases diagnosed with mucinous adenocarcinomas of the appendix. Moreover, GNAS and
TP53 variations were mutually exclusive for ACs among patients with early-onset and late-
onset disease.

Pathogenesis of AC is driven by the accumulation of genetic and epigenetic alterations, which
remain largely unknown. Somatic variations of GNAS, a heterotrimeric G protein α subunit that
activates adenylyl cyclase downstream of activated G protein–coupled receptors in response to
hormones and a plethora of extracellular signals,25 have been identified in many gastrointestinal
diseases, including neoplasms of the pancreas26-29 and stomach30 as well as adenomas of the
colorectum.31,32 However, GNAS variation patterns in ACs remain incompletely understood. To date,
studies have reported conflicting evidence on the prevalence of GNAS variants by tumor histological
subtype among ACs.4,9,33 In a 2018 study of 703 AC samples,8 GNAS variations were reported in 22%
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of nonmucinous adenocarcinomas and in 49% of mucinous adenocarcinomas of the appendix. In the
present study, we observed that approximately 1 in every 4 appendiceal tumors carried a GNAS
variation. Among ACs diagnosed in patients with early-onset and late-onset disease, GNAS variations
were also found to be mutually exclusive with TP53 variations. Moreover, we reported that younger
patients with AC had 63% decreased odds of presenting with GNAS variations compared with late-
onset cases, patterns that persisted among patients with mucinous adenocarcinomas of the
appendix. Given that previous studies have revealed that most high-grade ACs are GNAS wild-type
tumors and also that GNAS and TP53 variations tend to be mutually exclusive,7,8 these findings
suggest that a subset of early-onset ACs may be more likely to occur de novo rather than progressing
from low-grade tumors—emphasizing that distinct pathways may contribute to early-onset AC. Given
this mutual exclusivity for GNAS and TP53 variations and reduced likelihood for young patients with
AC to have somatic GNAS variations compared with late-onset cases, future studies are also
warranted to examine germline TP53 variants and hereditary syndromes among young patients
diagnosed with AC.

PIK3CA encodes the p110 catalytic subunit of phosphatidylinositol-3-kinase (PI3K), among the
key kinases in PI3K/AKT and the mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR)
signaling,34,35 and promotes malignant cell growth and invasion.36 PIK3CA is among the most
commonly altered genes across various cancer types, including CRC and gastric tumors.37 A 2019
comparison of PIK3CA variation frequencies between appendiceal adenocarcinoma and CRC cases
revealed lower variation rates in appendiceal neoplasms (6% vs 17%-22%).4 Similar to these and
other findings,4,6,38,39 PIK3CA variations were reported in 6.8% of AC cases in our cohort. However,
in contrast to previous results from variation frequencies between patients diagnosed with early-
onset vs late-onset CRCs that did not identify differences in PIK3CA variation rates,40 here we
observed distinct PIK3CA variation patterns by age group for AC, which persisted after adjustment for
multiple testing among highly altered genes. Compared with late-onset AC cases, young patients had
a 4.7-fold increased odds of presenting with PIK3CA variations in ACs, findings that persisted after
adjustment for multiple testing. These findings provide initial insight to suggest that mechanisms of
early-onset appendiceal carcinogenesis may be distinct from early-onset colorectal carcinogenesis.
Moreover, as alpelisib—a PIK3CA inhibitor—became FDA-approved last year for PIK3CA-altered,
hormone receptor–positive advanced breast cancer,41 this study reveals that 12% of early-onset AC
cases could potentially benefit from targeting this variation and merits further study. Moreover, as
studies have posited that adolescents and young adults (AYAs; age 18-39 years) harbor a distinct
biology of cancer42-44; additional investigation of variation patterns within the AYA population are
needed in larger cohorts.

Currently, the roles of TSC2 and SMAD3 in appendiceal carcinogenesis remain unexplored. TSC2
is a target of RAS/ERK signaling, and direct phosphorylation of tuberous sclerosis complex 2 (TSC2)
by ERK leads to suppression of tumor-suppressive functions.45 A study of 63 colon carcinomas46

showed that approximately one-third of colon carcinomas were positive for phosphorylated TSC2.
Moreover, reduced expression of TSC2 was also found to be associated with shorter disease-free
survival among 50 patients with CRC.47 Notably, TSC2 was shown to positively regulate expression
of mucin2, a marker of goblet cell differentiation in intestinal cells.48,49 TSC2 inactivation altered
differentiation throughout the intestinal epithelium, with a marked decrease in goblet cell lineages.50

As goblet cell carcinoid tumors accounted for less than 10% of cases in this cohort, we were unable
to assess genomic differences of AC by age at clinical sequencing specific to this histological subtype.
Nevertheless, as young patients had higher odds of presenting with TSC2 variations, these findings
posit a potential role for targeting the mTOR network51 in AC therapy, particularly for young patients.

SMAD genes are key mediators of transforming growth factor β (TGF-β) signals that, on
inactivation, enhance tumor growth.52,53 Previous studies have reported that SMAD3 variations are
infrequent in CRCs (<5% of sporadic tumors and colorectal liver metastases).52,54-56 Consistent with
these reports, we observed SMAD3 variations in fewer than 5% of AC cases. Moreover, SMAD3
variations had higher odds of occurrence in ACs of young patients, positing a potential distinct role
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for SMAD3 as well as TSC2 in early-onset appendiceal carcinogenesis. Given the relatively low somatic
variation frequency in TSC2 and SMAD3 in our cohort, further investigations are warranted to explore
the mechanistic role of these genes and related pathways, particularly in early-onset AC.

Strengths and Limitations
The use of data from the GENIE clinicogenomic data-sharing consortium is a strength of this study
because it allowed for pathologically verified cases with clinical-grade sequencing data to be
identified from 12 institutions worldwide. However, we also acknowledge that our study has
limitations. Our analyses were conducted using GENIE data from a large number of patients with AC;
however, GENIE does not record information about cancer stage, metastasis sites, pseudomyxoma
peritonei, or tumor grade (eg, low-grade appendiceal mucinous neoplasms). As such, we were unable
to assess for differences in these tumor characteristics by age at clinical sequencing or to investigate
whether these differences were associated with distinct genomic patterns of early-onset AC. Similar
to previous studies,8 specimens submitted for sequencing in GENIE derived from primary ACs and
metastatic sites. Given that half of all tumors in this study derived from metastases—with similar
proportions for early-onset and late-onset AC cases—these findings are indicative that most patients
in this study had stage IV disease. However, primary AC tissue may have been sequenced in cases
that presented with metastatic disease, which does not allow us to rule out that the molecular
patterns reported in this study may be in part related to AC stage. In addition, because all somatic
variations were not systematically evaluated within GENIE, the true prevalence of somatic variations
in our cohort may be even higher. Risk of potential bias also exists in our study due to overfitting
variations that occur with a small probability.57,58 GENIE also lacks detailed information regarding
individual-level characteristics, including family history of cancer, and does not provide any data
about germline genetic features, cancer treatments, or prognostic outcomes for patients with AC.
Importantly, GENIE does not collect information on patient age at cancer diagnosis. Given that the
date of clinical sequencing is likely to have occurred after the date of AC diagnosis,19 early-onset AC
patients in our study were assigned to the early-onset group. However, a few patients with AC may
have been misclassified into the late-onset AC group, or patients may not have undergone clinical
sequencing until disease relapse. Notwithstanding this limitation, findings from our additional
comparison of somatic cancer gene variation patterns specifically among adults diagnosed with
early-onset AC vs those aged 70 years or older were consistent findings and further support our
study results.

Conclusions

To our knowledge, this international consortium study is the first to examine molecular features of AC
by age. This study found a distinct spectrum of somatic variations among early-onset AC cases, as
younger patients had higher odds of presenting with PIK3CA, SMAD3, and TSC2 somatic variations
and decreased odds of presenting with GNAS variations compared with late-onset AC cases. These
findings demonstrate that ACs identified among young individuals harbor a distinct molecular
phenotype compared with late-onset ACs and yield clinical actionability in future studies that should
aim to elucidate distinct molecular phenotypes and mechanisms of early-onset AC and to develop
and test personalized therapeutic modalities tailored to young patients diagnosed with AC.
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