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SUMMARY

Although several recent studies have characterized structural variants (SVs) in germline and cancer genomes
independently, the genomic contexts of these SVs have not been comprehensively compared. We examined
similarities and differences between 2 million germline and 115 thousand tumor SVs from a cohort of 963 pa-
tients from The Cancer Genome Atlas. We found significant differences in features related to their genomic
sequences and localization that suggest differences between SV-generating processes and selective pres-
sures. For example, our results show that features linked to transposon-mediated processes are associated
with germline SVs, while somatic SVs more frequently show features characteristic of chromoanagenesis.
These genomic differences enabled us to develop a classifier—the Germline and Tumor Structural Variant
or ‘‘the great GaTSV’’ —that accurately distinguishes between germline and cancer SVs in tumor samples
that lack a matched normal sample.

INTRODUCTION

Structural variants (SVs) are rearrangements of genomic ma-

terial that result from incorrect double-strand break (DSB)

repair. Large-scale whole-genome sequencing (WGS) efforts

have revealed a prominent role of recurrent somatic SVs as

cancer drivers1 and as biomarkers of disruption of the

DNA damage response and other processes.2,3 Similar

studies on normal tissue have shown that human genetic di-

versity results in large part from germline SVs.4 The SVs in

these different contexts may result from different biological

constraints.

MOTIVATION While structural variants (SVs) harbor rich insight into the pathogenicity of diseases such as
cancer, the models used to study these SVs often lack matched normal samples. This makes it difficult to
separate germline from cancer-related variants. Our ability to confidently associate disease phenotypes
with their underlying genomic events depends on differentiating germline from cancer SVs. Given that germ-
line and somatic SVs are generated by different processes, we hypothesized that they will be distinguishable
based on their genomic contexts. Here, we introduce a machine-learning-based classifier to distinguish
germline from cancer-related SVs in tumors without matched normal samples.
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All SVs including somatic variants as well as benign and dele-

terious germline variants arise from DSBs that are repaired to

new loci in the genome. The resulting rearrangements can

delete, duplicate, invert, or translocate segments of DNA. The

responsiblemechanisms of DSB repair include non-homologous

end joining (NHEJ), which pastes broken ends of DNA together

irrespective of adjacent sequence homology; microhomology-

mediated end joining, which utilizes 3–10 bp of breakpoint-adja-

cent microhomology to form repair intermediates; and homolo-

gous recombination, which uses more bases of homology.

Germline and somatic SVs are likely to arise from different

DSB repair mechanisms. Previous studies report that germline

SVs primarily result from non-allelic homologous recombination,

where substantial amounts of sequence homology at distinct loci

are employed in double-stranded break repair, often resulting in

the deletion of the intervening sequence.5,6 Conversely, somatic

SVs, which present with more varied spans and clustering of

breakpoints, indicate a tendency toward NHEJ and replication-

based mechanisms of repair such as microhomology-mediated

break-induced replication, which are more error prone.5–7 How-

ever, a direct and comprehensive comparison between the fea-

tures of germline and somatic SVs is likely to provide a more

detailed view of the differences in their generation, with implica-

tions for the activity of different DNA damage and repair pro-

cesses in human vs. somatic cell evolution.

One benefit of recognizing the different features of germline

and somatic SVs is that it provides an opportunity to distinguish

germline and somatic SVs when only data from somatic tissue

have been collected. Currently, confidently designating an SV

as ‘‘somatic’’ requires comparing sequencing data from highly

clonal somatic tissue such as cancers or single cells with multi-

clonal ‘‘normal’’ tissues that represent the germline. However,

there are many situations in which normal tissue is unavailable,

including clinical settings8 and the study of long-term cell line

models.9 There is one existing method to deplete germline SVs

from samples lacking matched normals. This method, which

we term ‘‘fuzzy matching,’’ involves matching SV breakpoints

to germline reference databases, allowing for a certain amount

of ‘‘slop,’’ or distance from the observed SV’s breakpoints to

the closest germline reference SV’s breakpoints.10–12 However,

this method has limitations, including its inability to detect rare

germline variants, the lack of a standardized definition of slop

parameter, and variability in breakpoint calls across different

SV callers, which arise from methodological differences and

conventions for assigning ambiguous breakpoint locations.

Considering these issues, as well as the fact that about half of

every individual’s germline SVs are extremely rare or completely

unique,13 the fuzzy matchingmethod is not able to accurately re-

move germline SVs from samples without matched normals. The

ability to distinguish germline from somatic SVs in the absence of

normal tissue is therefore valuable both clinically and in cancer

research.

Here, we comprehensively evaluate similarities and differ-

ences between germline and somatic SVs, confirming previous

findings with similar comparisons10 and extending upon these

results. We find that they are strikingly different in molecular

context, enabling us to develop a machine-learning-based clas-

sifier (the Germline and Tumor Structural Variant classifier, also

known as the great GaTSV) that can distinguish germline from

somatic SVs called by SvABA in the absence of a matched

normal sample with extremely high accuracy.

RESULTS

To explore the differences between somatic and germline SVs,

we used a TCGA (The Cancer Genome Atlas) dataset of paired

tumor-normal WGS encompassing 963 tumors from 24 cancer

types.We used the SvABA SV caller to ascertain the breakpoints

and types of the SVs in this dataset.14 Across the 963 tumors,

germline SVs outnumbered somatic SVs 17:1 (Figure 1A, median

of 2,007 germline SVs and 53 somatic SVs per tumor). The num-

ber of germline events in a given individual was constant irre-

spective of age, whereas the number of somatic SVs in a sample

showed a slight positive correlation with age (Figures 1B and 1C)

as shown previously.10

Germline and somatic SVs have different SV features
To evaluate the differing impacts of SV generation and selection

processes between germline and somatic contexts, we

compared features of germline vs. somatic SVs (also see

Table S1 and Figures S1A–S1D). The most striking difference

was SV span, the distance between intrachromosomal break-

points. Somatic SVs had spans 60 times larger than those of

germline SVs (KS test, p < 2.2e-16; Figure 1D) and were about

twice as likely to have spans greater than 1,000 bp (67%of all so-

matic SVs vs. 31% of all germline SVs), a number that swells to

60 times more likely at 1 Mb (27% of all somatic SVs vs. 0.4% of

all germline SVs). These results align with the intuition that SVs of

larger spans are likely to result in changes to the genome that are

not tolerated during normal development. Peaks in the germline

SV span distribution corresponded to the typical spans of SINE

and LINE transposable elements.15,16 Germline and somatic

span distributions varied by SV type, with the greatest differ-

ences between germline deletions, which tend to be short, and

somatic deletions, whose span distribution is more uniform (Fig-

ure S1E). These results are consistent with previous studies of

germline and somatic SVs.2,10

The secondmost striking difference between germline and so-

matic SVs was the much higher levels of breakpoint homology

attributed to germline SVs (KS test, p < 2.2e-16; Figure 1E), sug-

gesting a transposon-mediated origin. Closer examination of the

distribution of homology lengths revealed a peak between 13

and 17 bp in germline SVs but not somatic SVs. This peak was

specifically present in germline deletions of �300 bp span

(Figures S1F and S1G), corresponding to the spans of Alu ele-

ments—a type of SINE element and the most abundant transpo-

sons in the human genome.17 Previous studies have shown that

Alu elements comprise a significant proportion of transposable

element-mediated rearrangements in the genome and use

�15 bp of homology.18 Germline SVs were closer to SINE and

LINE elements than somatic SVs, regardless of SV type (KS

test, p < 2.2e-16; Figures 1F–1H, S1H, S2A, and S2B), and—of

all repeat elements—these showed the greatest difference in

range of distances between germline SVs and somatic SVs

(Figures S2C–S2Q). Interestingly, somatic SVs were closer to

all classes of RNA pseudogenes compared with germline SVs.
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Figure 1. SV features differ significantly between germline and somatic genomes

(A) Distribution of germline and somatic SV frequencies in TCGA genomes.

(B and C) Pearson correlation analysis between germline SV frequency and patients’ age in germline (B) and somatic (C) genomes.

(D) Overall span distribution of germline and somatic SVs.

(E) Homology length distribution of germline and somatic SVs.

(F) Distance of germline and somatic SVs to nearest repeat element (LINE or SINE).

(G and H) Distribution of distance to SINE (G) and LINE (H) elements.

(I) Distance to nearest SV within a sample.

(J) Number of SVs within a 5 Mbp window of each SV breakpoint within a sample.

(K) Proportion of germline and somatic SVs that impact a gene or overlap an exon.

(L) Proportion of each SV type—Del, deletion; Dup, duplication. Inter(interchromosomal/translocation), Inv (inversion) present in germline and somatic SVs.

(M) Distribution of total distance of germline and somatic SVs to the closest SV in gnomAD (reference) SV database.
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Overall, these data suggest that germline SV generation is linked

to the activity of transposable elements.

In contrast, somatic SVs are more likely to be formed by chro-

moanagenesis19 and affect gene structure. Somatic SVs were

more likely to be found in proximity to each other (KS test,

p < 2.2e-16, Figures 1I and 1J) and were more likely to disrupt

coding sequences or span entire genes (Fisher’s exact test,

both p < 2.2e-16; Figure 1K). Strikingly, 51% of somatic SVs

directly affected the exome, in contrast to only 3.8% of germline

SVs. Deletion events made up about 75% of germline events but

only 29% of somatic events (chi-squared test, p < 2.2e-16; Fig-

ure 1L), whereas somatic SVs were nine times more likely to be

translocations (chi-squared test, p < 2.2e-16). Finally, germline

SVs were much closer to reference SVs in the gnomAD data-

base13 (median of 12 bp) than somatic SVs (median of 51k bp)

(p < 2.2e-16; Figure 1M). Overall, our analysis of single features

of SVs showed pronounced differences in the characteristics

of germline compared with somatic SVs.

If there are specific variant-generating or selection processes

that result in germline and somatic SVs, we expect the features

of SVs (Table S1) that are linked to such processes to

vary together. Indeed, characteristic combinations of SV fea-

tures between germline and somatic SVs reflected the pro-

nounced differences in the relationships between SV features

(Figures 2A–2C). Somatic SVs with shorter spans tended to

have longer homology (Figure 2A), while no such associations

were observed for germline SVs. Germline SVs had longer ho-

mology if they were closer to known SINE elements or were de-

letions (Figures 2A and 2B), while no such association existed for

somatic SVs (Figures 2A and 2D). Longer germline SVs also

showed higher homology GC content while we observed the

opposite in somatic SVs (Figure 2D). Interestingly, germline

and somatic translocations were closer to LINE and SINE repeat

elements than other SV types (Figures 2B and S1H). Altogether,

these data further suggest that transposon-mediated processes

dominate germline SV generation while only a subset of somatic

SVs originate from this pathway. Recently published long-read

WGS also confirmed the presence of highly prevalent germline

transposons.20 In contrast, somatic SVs showed an anti-correla-

tion between homology length and GC content with the number

of SVs within 5 Mbp as well as SV span with its distance to the

nearest SV (Figures 2A and 2D). These data indicate a subset

of (longer) somatic SVs generated in clusters by NHEJ in a

more complex process like chromothripsis.

The differences in feature associations between germline and

somatic SVs also hinted at the strong differences in the selec-

tion pressures they face. Somatic deletions were significantly

more likely to span gene/exons than germline deletions.

(Figures 2C and 2F). Also, while duplications were also more

likely to span genes than other SV types in both germline and

somatic SVs (chi-squared test, q < 2.2e-16; Figure 2C), this as-

sociation was significantly stronger in somatic SVs (Figure 2F).

Germline inversions, which could be more neutral in their ef-

fects on gene expression, were more likely to affect genes/

exons than other germline SV types (Figure 2C) and also

more likely to span genes/exons than somatic inversions (Fig-

ure 2F). Our analysis of the association between replication

timing and SV type also found results consistent with strong se-

lection pressures conserving the coding genome in the germ-

line. We observed a positive correlation between homology

length and replication timing among germline SVs that was ab-

sent or insignificant among somatic SVs (Figure 2A). This

shows an enrichment for high-fidelity repair in gene-dense re-

gions in the germline context that is not observed in cancer-

associated SVs. Also, while there was an overall bias for inver-

sions and deletions toward later replicating genomic loci and

duplications for earlier replicating loci (Figure 2B), striking dif-

ferences arise when comparing across germline and somatic

SVs. Notably, somatic duplications and inversions showed

significantly higher replication timing values, corresponding to

earlier replicating regions, than germline duplications and inver-

sions (Figure 2E). Early-replicating regions tend to be gene-

dense and highly expressed.21 Together, these data indicate

strong selection pressures to conserve the full coding genome

in the germline attenuated in cancer cells.

Extending SNV classification approaches to SVs proves
insufficient
Next, we considered how we might use this information to

distinguish between germline and somatic SVs when paired

germline DNA sequencing data are unavailable. As a control,

we first attempted to filter germline SVs using the gnomAD

v.4.0 population dataset,13 analogous to the commonly used

filtering approach for removing germline SNVs.22,23 However,

only a fraction of germline SVs matched within 3 bp of a gno-

mAD SV (�1.0 million SVs out of 2.0 million germline SVs

with only �31 thousand SVs matching exactly to a reference

gnomAD SV). The paucity of exact matches may be due to dif-

ferences in SV callers between gnomAD and our dataset as

well as the fact that most germline SVs are not recurrent.13 In

fact, when we assessed the likelihood of finding a particular

SV from a patient within gnomAD using a 200 bp slop, we

found that only 50% of SVs are found in the gnomAD reference

database. An earlier study by Chen et al. reported that 85% of

germline SVs in their cohort were recurrent using the same

slop. However, their analysis considered the total set of germ-

line SVs across the cohort including multiple entries of the

same variant if it appeared in multiple individuals. Since we

were interested in determining the fraction of germline SVs in

any single individual that would be present in gnomAD, we

only considered a deduplicated set of SVs, where each SV

had a single entry even if it was detected in many people.

Due to the fact that about half of germline SVs are recurrent,

the distance from gnomAD-listed germline SVs was significantly

different for germline and somatic SVs (p < 2.2e-16; Figure 1M),

and about a third of germline SVs lay more than 1,000 bp from a

gnomAD SV. Therefore, to match TCGA SVs to the gnomAD

reference SVs, we determined the average base pair distance

of each pair of breakpoints from each TCGA SV to its closest

SV in gnomAD. This fuzzy matching approach had an overall

AUC of 0.90. The optimal cutoff point on the ROC curve of

�1,400 bp average distance from the nearest gnomAD SV re-

sulted in a high degree of sensitivity in correctly classifying so-

matic SVs (TPR = 96% of true somatic events). However, this

cutoff still resulted in a large fraction of germline contamination

(60%) in the set of SVs called somatic (positive predictive value
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Figure 2. SV feature associations differ between somatic and germline SVs

(A) Spearman correlations between continuous features within somatic and germline SVs (positive correlations in blue, anticorrelation in red).

(B) Differences in the values of continuous SV features between categorical SV features within germline and somatic SVs.

(C) Odds ratios of the associations between the categorical variables gene or exon impact and SV type in germline and somatic SVs.

(D) Difference in Spearman correlation values between continuous features across germline and somatic SVs.

(E) Differences in the values of continuous SV features between germline and somatic SVs within categorical SV features.

(F) Difference in odds ratios of categorical variable comparisons across germline and somatic SVs. For all panels, the circle size represents the significance of the

statistic represented.
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[PPV]) (Figures 3A and 3B). These data show that a simple filter

based on the closest germline SV in gnomAD cannot sufficiently

differentiate between germline and somatic SVs in tumor-only

SV calls.

Single features are insufficient to distinguish germline
and somatic SVs
To test the predictive value of individual SV features, we con-

structed single-feature logistic regression models with a training

set of 200,000 SVs. We tested each model on 100,000 SVs and

obtained an average single-feature AUC of 0.656 (SD 0.127, Fig-

ure 3C). The distance from either breakpoint of an SV to its near-

est gnomAD SV performed best, with similar AUCs of �0.90

(Table S2). Even with this performance, neither feature achieved

a positive predictive value of greater than 0.50 resulting in a large

amount of germline SVs in the set of predicted somatic events.

Replication timing, insertion GC%, insertion length, and distance

to SINE elements were poor individual differentiators between

germline and somatic SVs. We concluded no single SV charac-

teristic was sufficiently predictive to perform the germline or so-

matic classification.

GaTSV distinguishes SVs based on somatic and
germline identity
As individual features cannot sufficiently distinguish germline

and somatic SVs, we used the combination of SV features to

develop a support vector machine (SVM)-based classifier—the

great GaTSV classifier—to distinguish between germline and so-

matic SVs.We trainedGaTSV on 509,433 SVs from 634 samples,

two-thirds of all samples available in our TCGA cohort. Once

trained, we tested the classifier on 262,118 SVs from 329 sam-

ples, one-third of the samples in our TCGA cohort.

In addition to a binary classification, GaTSV generates a prob-

ability of classification for each variant, with values closer to 1 rep-

resenting a higher likelihood of a variant being somatic. These

probabilities allow for the selection of a classification cutoff to pri-

oritize certain performance metrics, including AUC, PPV, etc. For

instance, having a cutoff farther from 0 would reduce the number

of germline SVs falsely called somatic by the classifier (increasing

the PPV), while increasing the number of true somatic SVs falsely

called germline (decreasing the TPR). To balance these consider-

ations, GaTSV uses a cutoff of 0.268, whichmaximizes the sum of

the PPV and TPR in our validation set.

A B C

D E F

Figure 3. Classifier performances on the TCGA test set

(A) ROC for classifying SVs based on a cutoff distance to gnomAD reference (fuzzy matching).

(B) PR curve for classifying SVs using fuzzy matching.

(C) ROC for separate single-feature logistic regression classifiers.

(D) ROC for the GaTSV classifier.

(E) PR curve for the GaTSV classifier.

(F) Positive predictive value (PPV) of the GaTSV classifier by tumor type showing variance in performance across tissue types. Boxes represent the interquartile

range (IQR) of PPVs; whiskers extending from the boxes represent the range 1.53 beyond the IQR.

Please cite this article in press as: Chukwu et al., A sequence context-based approach for classifying tumor structural variants without paired normal
samples, Cell Reports Methods (2025), https://doi.org/10.1016/j.crmeth.2025.100991

6 Cell Reports Methods 5, 100991, March 24, 2025

Article
ll

OPEN ACCESS



Overall, GaTSV achieved an AUC of 0.989, with a sensitivity

(TPR) of 0.915, specificity (1 – FPR) of 0.977 (Figures 3D and

3E), and PPV of 0.849.

GaTSV’s performance varied across tumor types, largely due to

differences in the prevalence of somatic SVs in each tumor type.

The fraction of GaTSV-classified somatic SVs that were truly so-

matic was higher in tumors with many somatic SVs. In other

words, the PPV was higher in tumors with more somatic SVs. In

our test set, sarcomas had the highest somatic SV burdens

(�391 SVs per tumor) and the highest proportion of called-so-

matic SVs thatwere truly somatic (PPV= 0.947). In contrast, acute

myeloid leukemia, with the fewest SVs per tumor (�2 SVs), had

the lowest proportion of called-somatic SVs that were truly so-

matic (0.09) (Figure 3F). This findingwas corroborated at the sam-

ple level. Samples with a lower SV burden in the test set tended to

have lower PPV than samples with a higher SV burden (Figures 4A

and 4B). Specifically, 86% of samples with fewer than 10

somatic SVs had PPV below 0.5. In contrast, only 0.5% of sam-

ples with 10 or more SVs had a PPV below 0.5 (Fisher’s exact

test, p < 2.2e-16). These data show that GaTSV performs well

overall but is subject to falsely calling true germline SVs somatic

SVs in samples with very low somatic SV counts. GaTSV’s perfor-

mance also differs between germline SVs that recur in the TCGA

test set and those that do not, with GaTSV classifying recurring

SVs at a higher accuracy. The same is true for SVs that are found

within the gnomAD database. Although GaTSV is less accurate

for non-recurrent SVs (SVs more than 10 bp from other TCGA

SVs) and SVs not found in gnomAD,GaTSV performsmuch better

on these SVs than the fuzzy matching approach, likely due to the

other SV features it analyzes (Table S3).

GaTSV achieved an accuracy of 97% on average across all

tumor types (Figure 4C). To uncover potential weaknesses of

A B

C

Figure 4. GaTSV classifier performance is

related to somatic SV count

(A) Somatic SV count and PPV for each tumor type

in the TCGA dataset. Boxes indicate the IQR and

whiskers the range of 1.53 IQR.

(B) PPV vs. somatic SV count for all tumors in the

TCGA dataset.

(C) Accuracy of the GaTSV classifier across each

tumor type. Boxes indicate the IQR and whiskers

the range 1.53 IQR.

our classifier, we examined the features

of the misclassified SVs. The feature

distribution of germline SVs mislabeled

as somatic largely mimics that of true

somatic SVs in the test set (Figure S3).

This suggests that GaTSV poorly differ-

entiated these somatic-like germline

events, leading to germline contamina-

tion in the somatic calls. For example,

98% of misclassified germline SVs

were more than 1 kb away from a gno-

mAD reference (Figure S3B). Nonethe-

less, GaTSV correctly classified 91% of

germline SVs with a distance of 1 kb or

more from a gnomAD SV; therefore, GaTSV performs well

on most SVs.

GaTSV performs reliably in an independent dataset
To test howwell GaTSV classifies SVs in tumors from other data-

sets, we gathered a test set consisting of 7,623 SVs from 6 pedi-

atric high-grade glioma (pHGG) patients with comparable so-

matic SV burden to TCGA samples. The tumor samples used

in this dataset were collected with blood normals, which pro-

vided a truth set of somatic and germline SVs. The features

observed in the pHGG dataset had similar distributions to those

of the tumors in the TCGA dataset (Figure S4). GaTSV achieved a

sensitivity (TPR) of 0.975 and specificity (1 – FPR) of 0.892. Of the

SVs that were called somatic in this set, 84% were truly somatic

(PPV = 0.839). We conclude that GaTSV performs robustly

across different datasets.

GaTSV shows reduced performance in
underrepresented ancestries
We hypothesized that imbalance in representation of individuals

from certain ancestries in our training set would impair GaTSV’s

performance on individuals of those ancestries—specifically,

over 77% of individuals in the TCGA dataset are of European

descent. Indeed, GaTSV performed better on SVs from Euro-

pean individuals than on SVs from East Asian and African individ-

uals on all metrics considered, including the AUC of the ROC and

PR curves as well as the PPV (Figures 5A–5F). Among the ances-

tries considered, GaTSV performed the worst on African SVs

across all metrics. African genomes are considerably more

diverse than any other ancestry group, which means that

increased representation in the training set is necessary

compared with other ancestries.
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Figure 5. Classifier performances on ancestry-specific subsets of the TCGA test set

(A‒C) ROC for the GaTSV classifier on individuals descending from European (EUR) (A), African (AFR) (B), and East Asian (EAS) (C) ancestry.

(D‒F) PR curve for the GaTSV classifier on individuals descending from European (D), African (E), and East Asian (F) ancestry.

(G‒I) ROC for the fuzzy-matching method to the gnomAD database on individuals descending from European (G), African (H), and East Asian (I) ancestry.

(J‒L) PR curve for the fuzzy-matching method on individuals descending from European (J), African (K), and East Asian (L) ancestry.
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To evaluate whether this drop-off in performance was

unique to GaTSV, we also tested the gnomAD fuzzy matching

method on different ancestries. Again, we saw the best perfor-

mance on European SVs and the worst on African SVs, across

all metrics (Figures 5G–5L). European genomes are the most

represented ancestry group in the gnomAD database at over

77%.24 These results highlight the issue of ancestry biases

in public databases. GaTSV’s performance on the worst-per-

forming ancestry group—African—with a PPV of 0.66 was still

notably better than the gnomAD fuzzy matching performance

with a PPV of 0.42 on the best-performing ancestry group—

European.

A

B

C

Figure 6. Distribution of SV categories

(SV, signature input catalogs) for true and

predicted germline and somatic SVs

(A‒C) SV catalogs for the GaTSV-classified SVs

(C) match those of the true TCGA SVs (A) more

closely than the fuzzy matching to the gnomAD

database (B).

GaTSV enables the extraction of
somatic SV signatures in the
absence of paired normal SV calls
The effects of somatic SV-generating

processes were recently characterized

across TCGA using SV signature anal-

ysis.3 Somatic SV signature analysis has

only been described after the removal of

all germline SVs from the call set through

joint analysis with paired normal tissue.

We wanted to test if GaTSV allowed the

accurate extraction of these biologically

relevant patterns of somatic SVs without

a paired normal. Organizing the set of all

SVs in the TCGA dataset into the SV

signature input catalog showed an abun-

dance of short non-clustered deletions

(Figure 6A), the majority of which were

germline SVs. Both the gnomAD fuzzy

matching-classified germline SVs and

the GaTSV-classified germline SVs re-

captured this true germline SV deletion

peak (Figures 6B and 6C). However, gno-

mAD fuzzy matching misclassified many

of these short non-clustered deletions

as somatic, resulting in a falsely inflated

total number of somatic SVs to more

than double the true count of somatic

SVs. In contrast, GaTSV correctly

matched both the distribution and counts

of SVs seen in the true somatic and germ-

line SV signature input catalogs.

We extracted previously published SV

signatures3 based on these catalogs

and primarily detected reference SV

signature R9 in the germline profile and

only minor contributions of the other sig-

natures (Figures 7A, S5A, and S5B). In contrast, somatic SVs

were composed of a variety of signatures (Figures 7A, S5A,

and S5B). This difference in the reference signature proportions

across germline and somatic SVs suggests that themechanisms

behind somatic SV generation are more varied than those

behind germline SV generation. It is also possible that there

are additional germline SV signatures that we did not detect

because the reference signatures we used were extracted

from somatic SVs.

In the comparison of reference SV signature proportions,

GaTSV also outperformed gnomAD fuzzy matching. The medians

of the GaTSV-predicted ‘‘somatic’’ and ‘‘germline’’ signature
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contributionsmatched their respective true classmedian for refer-

ence signatures R3 (non-clustered translocations and short dupli-

cations) and R9 (short deletions); however, this was not the case

for the gnomAD fuzzy matching-derived signatures (Figure 7A).

GaTSV also showed high levels of correlation for called somatic

to true somatic and called germline to true germline for almost all

reference signatures (Figure 7B). These results further support

our finding that theGaTSV overcomes the germline contamination

issue in somatic SV calls without a paired normal.

GaTSV has reliable performance on SVs called by Manta
To test how well GaTSV classifies SVs from SV callers other than

SvABA, we ran Manta25 on the same set of pHGG tumor data

used above. This resulted in 6,241 SVs in the test set. Although

the specific distributions of features in SvABA- andManta-called

SVs had slight differences (Figures S4 and S6), the overall trends

remained consistent. Moreover, in the Manta test set, GaTSV

achieved a sensitivity (TPR) of 0.995, specificity (1 – FPR) of

0.747, and a PPV of 0.668. This demonstrates that, although

GaTSV is optimized for SVs called by SvABA, it performs reliably

on SVs from other SV callers.

DISCUSSION

Our analyses show that germline SVs are shorter, less likely to

impact genes, and have more bases of homology adjacent to

their breakpoints than somatic SVs. In contrast, somatic SVs

are more likely to cluster together and are farther from transpos-

able elements than germline SVs. These results strengthen pre-

vious findings that homology and transposon-based repair

contribute more to the formation of germline SVs than somatic

SVs. They also strengthen the intuition that germline genome

structure is under much more stringent fitness constraints than

somatic genome structure. We also establish that these differ-

ences can be used to computationally classify germline from

somatic SVs in the absence of a matched normal, with high

sensitivity and specificity.

Differences between DSB repair processes in somatic cells vs.

germ cells and their progenitors are reflected in differences

between SVs in these different contexts. Germline SVs tend to

have more bases of homology than somatic SVs, revealing a

preference for more accurate repair processes to maintain

genome integrity. Somatic SVs are closer to each other than

germline SVs, indicative of a higher likelihood of chromoanagen-

esis events in cancer cells.

Differences in fitness constraints in germline vs. somatic

contexts are also reflected in their SVs. Most common germ-

line SVs are short non-clustered deletions that do not impact

coding sequences. Previous work showed that even small re-

peats resulting from duplication have been found to decrease

cell fitness.26 Therefore, most germline SVs lack gene dosage

effects through copy-number alterations of the genomic

A B

Figure 7. Analysis of classifier performances using rearrangement signatures

(A) R3 and R9 reference signature activity is more accurately recapitulated using GaTSV-classified SVs than fuzzy matching-classified SVs. The proportion of

contributions of the R9 reference signature (top) and R3 reference signature (bottom) in each patient. Boxes represent the IQR with whiskers extending to 1.53

IQR and outliers beyond that as individual points. Box colors represent whether the germline or somatic SVs calls originated from SvABA (true), GaTSV, or fuzzy

matching (predicted).

(B) Signature contributions based on GaTSV-classified SVsmore closely match the true distributions compared with the fuzzy matching-classified SVs. Similarity

of signature contributions based on true SVs and SVs called by each classifier were calculated by Spearman correlation for all reference signatures between all

combinations of predicted vs. true germline vs. somatic SVs. The gray squares refer to undefined correlations between two zero vectors, or when no samples in

either class have any contribution for a given reference signature.
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sequence or changes to protein structure. Similarly, most

germline SVs tend to accumulate close to previously

described germline loci13 and are less likely to form in clusters.

We postulate that these observations are the result of a selec-

tive process that eliminates de novo germline rearrangements

that impact gene dose or protein functionality. The particular

underlying process is worthy of further investigation and is

plausibly attributed to embryonic lethality leading to variant

extinction. As cells harboring somatic SVs do not need to

develop from a single cell to an entire organism, they are likely

subject to fewer fitness constraints than germline SVs. As a

result, they are more tolerant of impacts on coding sequences

and transcriptional dysregulation. We surmise that these SVs

are under selection pressure that is divergent from germ-

line SVs.

Previous studies have shown that the tumor context is

capable of altering the replication timing landscape. Such

transformation from early-to-late replication and vice versa

are demonstrated in chromatin remodeling and methylation fre-

quency.21 The types of SVs were also linked to this altered

chromatin compaction density between germline and somatic

cells. While this consideration is not accounted for in our anal-

ysis, future studies can seek to uncover this potential bidirec-

tional relationship between the cancer context and replication

timing.

We took advantage of the differences between germline and

somatic SVs to create an SVM classifier to distinguish them in

cases where a matched normal sample is unavailable. Our

SVM performed well (AUC = 0.99, PPV = 0.85), so we termed it

the great GaTSV classifier. One significant strength of GaTSV

is its ability to classify SVs that are not present in germline refer-

ence databases—this is critical as most SVs are rare and, there-

fore, not present in reference databases.

Although our classifier performed well overall, it tended to

misclassify certain variants, such as its propensity to call somatic

deletions shorter than 100 kb as germline rearrangements.

These incorrect classifications may reflect true limitations in

the great GaTSV and create a false identity for SVs. However,

our analysis showed that features of germline SVs misidentified

as somatic closely mimicked features of true somatic SVs and

vice versa. While SV-generating processes differ substantially

between germline and somatic contexts, some processes

such as the integration of transposable elements and repeats

into the genome are common to both.27 This overlap could

lead to similarities in the SV features, thus making them indistin-

guishable to the classifier.

The great GaTSV classifier will facilitate several avenues of

new research to understand the formation and impact of germ-

line and somatic SVs. Using GaTSV, SVs in clinical samples

lacking a matched normal can be interrogated. The power of

deeply characterized groups of cell lines such as those in the

Cancer Cell Line Encyclopedia9,28,29 can now be brought to

bear on SVs, including discovering relationships between

drug sensitivities, CRISPR dependencies, and gene expression

on specific SVs, signatures of SVs, and SV abundance. The

ability to accurately distinguish germline from somatic SVs in

the absence of a matched normal will enable functional assess-

ment of factors guiding SV formation and consequences for

therapy development. Population-level databases such as gno-

mAD may contain somatic variants resulting from aging-related

processes; this tool may provide for a more accurate catalog of

variants.

Limitations of the study
Our tool has several limitations. First, it did not perform as well on

patients of African ancestry compared with patients of European

ancestry, likely due to the underrepresentation of individuals of

African descent in our TCGA training dataset. Second, our tool

is optimized for SV calls from SvABA,14 as it was both trained

and its hyperparameters validated using breakpoints called by

SvABA, whichmay follow different conventions from other SV cal-

lers. Although GaTSV does have reliable performance on Manta

SV calls, optimal performance on these SVswould require retrain-

ing or reselecting hyperparameters specific to each SV caller.

Another potential limitation of our study is the presence of arti-

factual rearrangements in SV calls. SvABA uses short-read

sequencingdata, potentially resulting in reads that align tomultiple

repetitive loci. These multi-mapping reads can result in artifactual

SV calls present in many germline and somatic SV call sets. Since

these SVs are present in both germline and somatic calls, they will

be classified as germline by traditional methods that compare so-

matic SVs with a matched germline sample, such as our training

set. Therefore, the GaTSV classifier will classify these artifactual

SVs as germline. Hence,whileweexpect that theGaTSV classifier

can identify somatic variants from the pool of germline and artifac-

tual SVs, it ismore difficult to drawbiological conclusions from the

GaTSVgermlinecalls, as theyare contaminatedwithartifactual SV

calls. In futurework, these issuescanbeaddressedwith long-read

sequencing data, diversifying the ancestries represented in the

training set, and extending GaTSV to use SV calls from other soft-

ware such as Manta and GRIDSS2.25,30
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STAR+METHODS

KEY RESOURCES TABLE

METHOD DETAILS

Data acquisition
Whole genome sequencing tumor samples withmatched normals were obtained from the TCGA patient cohort32 (Table S4).We used

SvABA to call SVs on all samples as previously described, which were used for our training and test sets.14 The pHGG test set con-

sisted of six samples from our recent study.35 We also ran SvABA and Manta on the pHGG samples, which formed the SVs used in

our external test set.

Quality control and filtering
From an initial set of 974 samples, we filtered out samples with more than 5000 total SVs, with greater than 50%being inversions. We

believed that these samples, which were also excluded from the PCAWG comprehensive analysis, were primarily composed of arti-

factual SVs. This filter excluded 11 samples and we proceeded with 963 samples for the rest of our analysis.

We obtained the filtered ‘‘sv.vcf’’ SvABA outputs for germline and somatic breakpoints from all samples of our cohort. We then

grouped pairs of breakpoints according to their MATEID. Any breakpoint without an identified MATEID pair was removed. We will

subsequently refer to these MATEID pairs as rearrangements (or SVs). Once combined, we selected SVs that had the max MAPQ

value (60) for at least one breakpoint, were not detected solely by discordant reads, had a span of 50bp (1000bp for inputs to

GaTSV) or greater or were translocations, and had at least two SV-supporting split reads.

Once the TCGA rearrangements were filtered, two-thirds (555,849 SVs) were randomly selected to be part of the training set, and

the remaining one-third (277,925 SVs) were labeled as the test set.

To analyze the samples run through Manta, the ‘‘somaticSV.vcf.gz’’ and ‘‘diploidSV.vcf.gz’’ files were unzipped, and the SVs from

each file were labeled as somatic and germline, respectively. Similar to SvABA outputs, theManta outputs labeled as ‘‘MantaBND’’ in

the ID field of the vcfs were grouped according to their breakend pair ID—the part of the ID field following ‘‘MantaBND’’ and the last

colon (‘‘:’’). All other events were analyzed as they appeared in the vcf file. In order to filter out potentially artifactual or low-evidence

reads, only SVs with at least 5 split and discordant reads were analyzed. Moreover, to account for the purity of the normal samples

compared to the tumor samples, only SVs with a 4:1 alternate to reference read ratio were taken for germline SVs. Finally, we only

tested GaTSV on Manta SVs with a SPAN of greater than or equal to 1000bp and translocations, similar to how GaTSV was trained

and tested for SvABA-called SVs.

Feature annotation
Once the filtering step was complete, we annotated each SV with the following features: distance to the closest gnomAD reference

SV, DNA replication timing of each breakpoint, GC content and length of any novel sequence insertion, GC content and length of

homology associated with a breakpoint, TP53 gene mutation status, number of other SVs within a 5Mbp window, total number of

SVs in the sample, distance to a long interspersed nuclear element (LINE), distance to a short interspersed nuclear element

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA sequence data Weinhood et al.32 dbGaP: phs000854.v3.p8

pHGG sequence data Dubois et al.35 dbGaP: phs002380.v1.p1

gnomAD v4.0 Collins et al.13 https://gnomad.broadinstitute.org/

downloads#v4-structural-variants

Replication timing Weddington et al.33 http://mskilab.com/fishHook/hg19/RT_NHEK_

Keratinocytes_Int92817591_hg19.rds

Repeat elements database Repeatmasker via UCSC Genome Browser https://genome.ucsc.edu/cgi-bin/hgTrackUi?g=rmsk

Software and algorithms

GaTSV This paper https://github.com/beroukhim-lab/GaTSV;

https://doi.org/10.5281/zenodo.14756714

SvABA Wala et al.14 https://github.com/walaj/svaba

signature.tools.lib Degasperi et al.3 https://github.com/Nik-Zainal-Group/signature.tools.lib

Manta Chen et al.25 https://github.com/Illumina/manta

R version 4.2.2 R Foundation https://www.r-project.org/
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(SINE), distance to the nearest SV, span of the SV, type of the SV (categorized as deletion, duplication, inversion, or translocation),

impact on a gene, and impact on an exon.

The distance to the closest gnomAD reference SV for a given rearrangement was encoded as two features, each representing the

distance of a breakpoint to its ‘‘corresponding’’ breakpoint of the nearest reference gnomAD SV (i.e. comparing the 5’ breakpoint of

the rearrangement to the 5’ breakpoint of a gnomAD reference SV and vice versa; also see Figure S7A). These distances were aver-

aged, and the gnomAD SV with the lowest average was labeled as the closest SV. If a matching gnomAD SV was not found, as is the

case for many translocations, we input an artificial distance of 1e9 for each breakpoint.

The DNA replication timing was likewise encoded as two features, corresponding to the replication timing of each breakpoint. This

was determined by looking up each breakpoint location in the DNA replication timing table for the hg19 reference genome

(from http://mskilab.com/fishHook/hg19/RT_NHEK_Keratinocytes_Int92817591_hg19.rds).

The GC content and length of insertion and microhomology sequences were features derived from the SvABA output. When

assembling the contigs, SvABA frequently finds short gaps or overlaps between regions that map to the reference genome. These

gaps or overlaps were output as ‘‘INSERTION’’ or ‘‘HOMSEQ’’ respectively. The gaps (i.e., the short region of the sample genome

that did not map to the reference genome) and overlaps were analyzed for GC content and length, and each of these were added as

features.

The TP53 mutation status was determined using the consensus SNV, MNV, and indel calls from TCGA samples available on the

ICGC Data Portal.33 These consensus calls were filtered for the TP53 gene and functional mutations (i.e. variants classified as

‘‘3’UTR’’, ‘‘5’UTR’’, ‘‘lincRNA’’, ‘‘Intron’’, ‘‘Silent’’, ‘‘IGR’’, ‘‘5’Flank’’, ‘‘RNA’’ were removed). 187 of our samples were not analyzed

in the PCAWG consensus calls. For these, we assigned the TP53 status as indeterminate (Table S4). Each sample was then assigned

a value of 1, 0, or -1, which corresponded to TP53 mutant, indeterminate, or TP53 wild-type.

The number of SVs in a 5Mbp window and the total number of SVs in the sample were calculated by counting the number of re-

arrangements that were within 5Mbp of the SV and within the specific sample respectively. The distances to the nearest SINE and

LINE events were calculated by taking the distance from a given rearrangement to the closest SINE and LINE events.31 The distance

to the nearest SV was calculated by iterating through other rearrangements in the same sample, determining the distance between

the given rearrangement and the other SVs, and selecting the lowest value.

The span of the SV was taken from the SvABA output. The SV-type feature was separated into four binary features, each corre-

sponding to insertion, duplication, inversion, or translocation events based on the position and read orientation of the supporting

reads.

The impact on a gene or exon region were binary factors representing whether a given rearrangement overlapped a gene or exon

region, which was downloaded fromGencode and Ensembl genome browser BioMart, respectively. If the SV breakpoint was located

within one of these regions, it was labeled with a 1. If no overlap was found, the feature was labeled with a 0 (also see Figure S7B).

Moreover, we log-transformed any feature that related to genomic distances or counts of SVs to reduce noise. These features

included the SV span, homology length, insertion length, distance to the closest gnomAD reference SV, distance to the nearest

SINE and LINE element, the number of SVs in a given sample, the distance to the nearest SV, and the number of SVs within 5Mbp.

Once all the features were added, each feature was then scaled. The scaling was done by creating a scaling matrix containing

values representing the mean and standard deviation of each feature (Table S5). These values were calculated by taking 10 random

samples of 50,000 SVs from the training dataset and evaluating the mean and standard deviation of the features for all these rear-

rangements. Each input rearrangement feature—including those in both training and test sets—was scaled by subtracting the mean

and dividing by the standard deviation in this matrix.

gnomAD filtering
We obtained the gnomAD v4.0 release from the open-source gnomAD browser.13 We filtered for variants that passed all gnomAD

filters and had resolved breakpoints. In addition, we excluded all complex (CPX) SVs due to unclear breakpoint origins, as well as

insertion (INS) SVs that lacked a source sequence. For insertion SVs that reported a source sequence, we resolved the breakends

to reflect a corresponding intrachromosomal or interchromosomal translocation.

gnomAD fuzzy matching
For each rearrangement in our test set, we first determined the distance to the closest gnomAD reference SV as described in the

feature annotation section (also see Figure S7A).

Each of the discrete values of average distance to gnomAD was treated as a cutoff, and we constructed an ROC curve by clas-

sifying all rearrangements with an average distance less than that cutoff as germline. For each of the cutoffs, the predicted and actual

classifications were used to calculate the specificity and sensitivity, which were used to generate the ROC curve.

Logistic regression
We trained 21 logistic regression models - one for each feature - using the glm method from the R stats package. Our training set

included a random sample of 200k SVs from the full training set described in the quality control and filtering section that were scaled

as described in the feature annotation section. We used each single-feature logistic regression model to compute prediction
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probabilities on 100k scaled SVs sampled from the full test set. Prediction probabilities were derived using the R stats predict

method. Finally, we calculated the AUC, TPR, and FPR values to evaluate the performance of each model (Figure 3C).

SVM
We used an SVM with an RBF kernel from the e1071 package in R and set cost and gamma parameters as 10 and 0.1 respectively.

These hyperparameters were determined by a grid-search, of all combinations of the following values: cost of 1, 10, 100, 500, 1000

for both RBF and linear kernels and gamma of 0.0001, 0.001, 0.01, 0.05 0.1, 1 for the RBF kernel. For each combination of hyper-

parameters, we performed a 5-fold cross-validation, splitting the training set into five groups. One group was selected as a validation

set for each of the five cross-validation iterations, and the other four groups made up the sub-training set. During each iteration, the

model was trained on the sub-training set and evaluated on the validation set. The resulting AUC and PPV for all iterations were aver-

aged for each combination of hyperparameters, and the model that performed well for both metrics was chosen.

Although SVMs typically do not have an inherent probability metric, there is a probability feature built into e1071 implementation of

the SVM—based on Platt Scaling. We used this to generate the GaTSV ROC curve and to select a probability cutoff that optimizes for

our specific needs, instead of just accuracy. Becausewe aimed to reduce germline contamination for analysis of somatic variants, we

decided on a cutoff that resulted in a high PPV.

To achieve this, we treated the probability cutoff as another hyperparameter and performed another 5-fold cross-validation for

each probability value between 0 and 1 in 0.001 increments. This time, we optimized for the maximum TPR + PPV value, since

we found that PPV itself was monotonically increasing with respect to the probability cutoff. We did not change the cost, gamma,

and kernel type parameters in this probability tuning step; these were kept as 10, 0.1, and RBF kernel respectively.

In constructing our classifier, we chose a probability cutoff that optimized for the sum of TPR and PPV, to minimize germline

contamination from rearrangements called somatic. However, the probability cutoff chosen for our classifier can be modified for

other use cases, including those that demand correct germline calls or a high overall accuracy. In such cases, a cutoff of the

maximum sum of the TNR and NPV or the maximum AUC in the same TCGA validation set can be used.

Ancestry analysis
Using consensus ancestry calls of TCGA patients from a previous study, we conducted a lookup of patients in our cohort to those in

the consensus calls.34 After excluding the 25 patients who were not in the consensus calls, the test set of 277,925 TCGA SVs—each

with an associated patient—were labeled with their corresponding ancestry call. For our analysis, we did not consider any of the 50

admixed patients. We also did not include the ‘‘amr’’ and ‘‘sas’’, corresponding to American and South Asian, ancestries, as there

were only seven and two patients within those categories, respectively. For the remaining ‘‘afr’’, eas’’, and ‘‘eur’’, corresponding to

African, East Asian, and European, ancestries, we took subsets of the test set according to their ancestry labels, and analyzed the

performance of the classifier on each subset (Figure 5).

Signature analysis
The signature analysis was performed primarily using the signature.tools.lib package published by the Nik-Zainal group.3 From

bedpe files containing SVs for each patient in our cohort, we first created true germline and somatic signature catalogs for each pa-

tient using the bedpeToRearrCatalogue function in the signature.tools.lib package. These signature catalogs consisted of counts of

the number of rearrangements organized across three categories: SV span, type, and clustering of all SVs of span above 1kb. This

process was repeated for predicted germline and somatic rearrangements from both the fuzzy matching approach and the SVM

classifier.

These catalogs were then fit to the reference signature profile for rearrangements from the same study using the Fit and plotFit

functions.3 This resulted in the true and predicted germline and somatic reference signature exposures for each patient, which shows

how much contribution each reference signature has in the collection of SVs in each patient. For Figures 7A and S5, we determined

the ratio of a given reference signature exposure to the sum of all exposures within a patient for all reference signatures. In the case

that there were no SVs in a patient—for a given class—the proportion was simply set as 0, instead of an undefined value.

In Figure 7B, we first conducted amodified Spearman correlation between each predicted and true class. Each vector used for the

Spearman correlation had a length of 963 and was composed of the proportion values for a given reference signature and a given

class. Each predicted vector was paired with another true vector with the same reference signature. If both vectors were nonzero,

then a normal Spearman correlation was conducted. If this was not the case, we calculated the correlation as follows: If both vectors

were zero, a Spearman rho of 1 was assigned. If one vector was zero and the other was nonzero, a Spearman rho of 0 was assigned.

QUANTIFICATION AND STATISTICAL ANALYSIS

We performed Kolmogorov-Smirnov tests to determine if the distributions of continuous features between germline and somatic SVs

significantly differed. Our p-value significance threshold was set to 0.05. For features quantified in discrete variables, we used Chi-

squared tests with a significance threshold of 0.05.

To assess the significance of associations between variables both within SV classes and across classes, we performed a variety of

statistical tests (Figure 2). For continuous/continuous feature comparisons within germline and somatic SVs, we computed

Please cite this article in press as: Chukwu et al., A sequence context-based approach for classifying tumor structural variants without paired normal
samples, Cell Reports Methods (2025), https://doi.org/10.1016/j.crmeth.2025.100991

e3 Cell Reports Methods 5, 100991, March 24, 2025

Article
ll

OPEN ACCESS

https://github.com/Nik-Zainal-Group/signature.tools.lib


Spearman ⍴ and defined moderate to high correlation as |⍴|R 0.5. We then obtained p-values for the Spearman ⍴ values using two-

sided t-tests as described previously.36 Next, we performed false discovery rate (FDR) multiple hypothesis correction with a q-value

threshold of 0.05. To check whether these correlations significantly differed across germline and somatic SVs, we derived z-scores

from the ⍴ values using Fisher’s z-transformation37 and subsequently obtained p-values. We performed FDR correction on these

p-values and defined significance at a q-value threshold of 0.05.

For continuous/discrete variables, we calculatedWilcoxon ranked sum tests.Within both somatic and germline SVs, we compared

observations in the binary ingroup to those in the binary outgroup. We reported the Hodges Lehmann estimator of location shift and

the FDR-corrected p-values with a significance threshold of 0.05. For across-group comparisons, we also computed Wilcoxon

ranked sum tests. Here, we compared continuous variable observations in the binary ingroup of germline SVs against the binary in-

group of somatic SVs.

For binary/binary variables, we performed Chi-squared tests on 2x2 contingency tables within germline and somatic SVs. We only

compared binary variables that were non-mutually exclusive to obtain a relevant statistic. We reported the odds ratio and FDR-cor-

rected p-values with a significance threshold of 0.05. For across-group binary/binary comparisons, we implemented the

Breslow-Day test for homogeneity of associations on the 2x2x2 contingency tables.38 This test checks if the odds-ratio across

different strata - in this case, germline and somatic - are significantly different for any pair of binary variables. We reported the

difference in odds ratios across the different strata and FDR-corrected p-values with a 0.05 significance threshold.

Please cite this article in press as: Chukwu et al., A sequence context-based approach for classifying tumor structural variants without paired normal
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